МФТИ и МИСиС: Платформа для осуществления фотон-магнонного взаимодействия на одном чипе

Продукт
Разработчики: Московский физико-технический институт (МФТИ), НИТУ МИСиС (Национальный исследовательский технологический университет)
Дата премьеры системы: 2021/10/27
Отрасли: Электротехника и микроэлектроника

Основная статья: Квантовый компьютер и квантовая связь

2021: Разработка платформы для осуществления фотон-магнонного взаимодействия на одном чипе

Коллектив ученых из МФТИ и НИТУ «МИСиС» разработал платформу для осуществления фотон-магнонного взаимодействия на одном чипе и экспериментально подтвердил эффективность ее работы. Разработка российских ученых может стать шагом к созданию гибридных квантовых устройств, которые считаются наиболее перспективным способом передачи квантовой информации. Исследование было опубликовано в журнале Physical Review Applied. Об этом МФТИ сообщил 27 октября 2021 года.

Игорь Головчанский, руководитель исследования, настраивает систему. Фотограф Сергей Гнусков, пресс-служба МИСиС

На октябрь 2021 года существует множество вариантов квантовых устройств: твердотельные сверхпроводящие, оптические на фотонах, с атомными ловушками и другие. Каждый из них имеет свои недостатки и плюсы. Одним из наиболее перспективных направлений развития квантовой вычислительной техники считается создание гибридных устройств, в которых элементы каждого типа будут отвечать за определенную функцию.

«
Например, на сверхпроводящих кубитах можно производить вычисления, но передавать данные все же удобнее по оптоволоконной связи, то есть с помощью фотонов. Поэтому необходимо сделать так, чтобы произошла конверсия микроволнового излучения в фотоны. Потом информация приходит на устройство, работающее по третьему принципу, и она должна снова конвертироваться и уже жить на этом устройстве, — пояснил руководитель исследования Игорь Головчанский, заведующий лабораторией криоэлектронных систем НИТУ «МИСиС», старший научный сотрудник лаборатории топологических квантовых явлений в сверхпроводящих системах МФТИ.
»

В последнее десятилетие в центре внимания исследователей и разработчиков оказались гибридные системы на основе коллективных спиновых возбуждений, или магнонов. Одно из наиболее заметных качеств магнонных устройств заключается в том, что магнонные системы достаточно легко перестраиваются магнитным полем. При этом магнонные системы по размеру существенно меньше фотонных, что значительно затрудняет разработку гибридных устройств. И это один из самых больших вызовов для ученых.Как с помощью EvaProject и EvaWiki построить прозрачную бесшовную среду для успешной работы крупного холдинга 2.1 т

Российским специалистам удалось создать систему, в которой реализовано сверхсильное фотон-магнонное взаимодействие, и экспериментально подтвердить силу этого взаимодействия. Так, сила фотон-магнонной связи в разработанной системе составила порядка 350 Гц. Для сравнения, ранее максимальный показатель для таких систем составлял около 100 Гц, а еще несколько лет назад он не превышал 1 Гц.

«
Система состоит из двух сверхпроводящих пленок, разделенных диэлектриком. В таких системах радикально меняется фазовая скорость, то есть фотон становится гораздо медленнее, что для данной системы критически важно, поскольку именно замедление фотонной фазовой скорости гарантирует прочность фотон-магнонной связи. Затем внутрь этого «сэндвича» сверхпроводник — изолятор — сверхпроводник мы встраиваем еще ферромагнитную пленку, и получается, что электромагнитные волны, которые живут в этой трехслойной конструкции, начинают взаимодействовать с ферромагнетиками. Ферромагнетики тоже начинают влиять на систему, и происходит гибридизация, — объяснил Игорь Головчанский.
»

При этом сверхсильная фотон-магнонная связь в созданной российскими учеными системе подтверждает присутствие в ней гибридных квазичастиц, которые ранее в подобных системах не наблюдались, а именно частиц плазмон-магнон-поляритонов, плазмонная составляющая которых защищает систему от так называемого сверхизлучающего перехода.

«
В нашей системе мы обнаружили, что так называемые куперовские пары (связанное состояние двух взаимодействующих через фонон электронов) вносят определенный вклад в энергию системы и меняют законы дисперсии этой системы, то есть резонансные частоты и т. п. Это важно, потому что все строится вокруг так называемой модели Дике, в которой рассматривается ансамбль частичек, которые могут взаимодействовать с электромагнитным полем, и, в принципе, если бы не было этого слагаемого, наша система могла бы перейти в сверхизлучательное состояние. Мы показали, что в наших системах сверхизлучательного перехода быть не может, — подчернул Игорь Головчанский.
»

Разработанная российскими учеными платформа для фотон-магнонного взаимодействия не только может стать основой для гибридных квантовых вычислительных устройств, но и позволит продвинуться в дальнейшем изучении таких тонких физических явлений, как, например, обменные спиновые волны. При этом ее существенным преимуществом является возможность создания сверхсильной фотон-магнонной связи на одном чипе.